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Abstract

In the first continent-wide study of the golden jackal (Canis aureus), we characterised its
population genetic structure and attempted to identify the origin of European populations.
This provided a unique insight into genetic characteristics of a native carnivore population
with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-
pair fragment of the mitochondrial control region. Bayesian-based and principal compo-
nents methods were applied to evaluate whether the geographical grouping of samples cor-
responded with genetic groups. Our analysis revealed low levels of genetic diversity,
reflecting the unique history of the golden jackal among Europe’s native carnivores. The
results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with
both contributing to the Baltic population, which appeared only recently. The population
from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with
samples from south-eastern Europe (AK approach in STRUCTURE, Principal Components
Analysis [PCA]), although the results based on BAPS and the estimated likelihood in
STRUCTURE indicate that Peloponnesian jackals may represent a distinct population.
Moreover, analyses of population structure also suggest either genetic distinctiveness of
the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE,
PCA), or possibly its connection with the Caucasus population (one analysis in STRUC-
TURE). We speculate from our results that ancient Mediterranean jackal populations have

PLOS ONE | DOI:10.1371/journal.pone.0141236 November 5, 2015

1/22


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0141236&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Genetic Structure and Expansion of Golden Jackals

no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

persisted to the present day, and have merged with jackals colonising from Asia. These
data also suggest that new populations of the golden jackal may be founded by long-dis-
tance dispersal, and thus should not be treated as an invasive alien species, i.e. an organ-
ism that is “non-native to an ecosystem, and which may cause economic or environmental
harm or adversely affect human health”. These insights into the genetic structure and
ancestry of Baltic jackals have important implications for management and conservation of
jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats
Directive and as such, considering also the results presented here, should be legally pro-
tected in all EU member states.

Introduction

An implementation of molecular techniques to study population genetics has broadened our
knowledge about several aspects of wildlife biology and ecology, including breeding characteris-
tics [1, 2], population connectivity, and dispersal [3, 4]. Simultaneously, it enabled us to assess
effects of historical processes [5-7], habitat fragmentation and isolation on distribution of
genetic diversity (e.g. [8-10]) and to reconstruct routes of recent colonisations, range expansions
and biological invasions [11-14]. As a result, information provided from molecular markers is
frequently used in wildlife management and conservation of endangered species [15-19].

Changes in the geographical range are recognized as natural processes and have occurred in
the history of most species [20-23]. Theoretical aspects of genetic after-effects of range shifts
have been thoroughly analysed (e.g. [24]). It was shown that range expansions may lead to
changes in population genetic structure and diversity. Initially, genetic structure should be
clearly emphasized and genetic diversity in subdivided population will likely be reduced in
comparison with the main distribution range and/or source population due to repeated bottle-
necks. However, over time as new areas are occupied, connectivity among territories may be
established and spatial population structure might decrease due to balanced gene flow among
populations, causing homogenization and increased genetic diversity within populations [24-
26]. Surprisingly, the genetic consequences of natural, contemporary range expansions have
begun to be investigated only very recently [27-31] and results so far are equivocal and not
always concordant with theoretical expectations.

Several carnivore species are currently expanding their distributions, especially in Europe
[32]. It has been observed that such populations are characterized by particular genetic struc-
ture and processes, at least on the scale of individual countries. The study of the recently
expanding (most probably from Russia) brown bear (Ursus arctos) population in Finland
revealed disappearance of initial structuring and homogenization, as well as gradual increase of
genetic diversity [33], as expected on the basis of theoretical models of range expansion [24, 25,
34]. Moreover, Hagen et al. [33] have shown increasing admixture between two genetic clusters
occurring in Finland [35] as the range expansion proceeded. In contrast, the Finnish grey wolf
(Canis lupus) population, also expanding since the 1990’s after almost complete eradication in
the 19th century, exhibited decreased genetic diversity during the initial phase of expansion,
despite clearly lower estimated population size [36]. The authors attributed this result to a low
degree of connectivity with adjacent Russian wolf population.

The golden jackal (Canis aureus) is one of the most widely-distributed canid species, found
in many areas of Europe and southern Asia [37, 38]. The ongoing expansion of the species in
Europe has caused concerns in regard to possible negative effects its presence could exert, for
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example through excessive predation of other wildlife species or livestock, and the transmission
of pathogens. In addition, there are several uncertainties regarding jackal management and pol-
icies, often in association with the unknown origins of jackal populations [38].

Population genetics of this species has been so far poorly characterised, especially when
compared to Europe’s large carnivores, such as the grey wolf (e.g. [39-42]), the European lynx
(Lynx lynx) [43-47] or the brown bear (e.g. [35, 48-50]). The first study focused on jackals in
Serbia [51] suggested a low level of genetic diversity and weakly pronounced genetic structure
in this recently-spreading population (see also [52]). Low genetic differentiation was also
found in populations from Bulgaria, Croatia, and Italy [52]. A significant but weakly-pro-
nounced genetic structure was only observed in the population of jackals from Dalmatia (Adri-
atic coast of Croatia). Fabbri et al. [52] also discovered that the jackals in Italy have an admixed
origin from the Dalmatian and mainland populations. The genetic data in these cases were sug-
gestive of a colonization process in golden jackals that is predominantly of a ‘stepping-stone’
nature, with short-distance dispersal and intermediate admixture. This contrasts with the long-
distance dispersal observed in other canids, such as grey wolves [53, 54].

Genetic relationships of the European golden jackals with jackals from the Asiatic part of
the species’ range, were not yet determined. Moreover, none of the studies so far analysed
genetic structure of the population on the larger scale (i.e., the continental level). Consequently,
the understanding of historic development of jackal populations in Europe is lacking. One of
the hypotheses suggested that the European population goes back to the introduction of jackals
from northern Africa in the 15th century [55]. This was later rejected on the basis of morphol-
ogy [56, 57], but the origin of most of the European population remains unknown. Archaeolo-
gic data indicate that jackals were already present along the Mediterranean coast in Croatia
and Greece ca. 7,000-6,500 yBP [58, 59]. Jackals remained absent from most of Europe until
the 19th century, when the species started to expand slowly, followed by a rapid expansion at
the end of the 20th century, which continues today [38, 60]. However, it is unclear whether any
of the present European populations originate from this ancient Mediteranean population or if
they are decendants of the later Asian colonization, e.g. from the Middle East or the Caucasus.
Secondly, if there was a recent colonization from the east, it is unknown whether original small
Mediterranean populations survived and merged with the wave of recent expansion. It is also
unknown whether low genetic diversity and lack of distinct genetic structure in part of the
European golden jackal population [51, 52] is an after-effect of fragmentation and population
decline in the first half of 20th century, or rather resulted from recent expansion, interlinked
with the founder effect pertaining to a recently established population. Hence, samples from
potentially long-lasting, stable populations, such as southern Greece, should be analyzed.
Although it was suggested that Italy was colonised from the Dalmatian coast and the mainland
[52], the source of other expansions in Europe have not yet been identified. The lack of proper
knowledge about the history of golden jackals in Europe can significantly affect management
decisions and thus influence the conservation of the species. For example, the Estonian, Latvian
and Lithuanian governments, despite the lack of reliable data, consider the golden jackal to be
an alien species introduced to the Baltics by people, and based on this, these governments
recently allowed unlimited lethal removal with the goal of eradicating the species [38].

The aim of the present work is to characterise for the first time the population genetic struc-
ture of European golden jackals on the continental scale, with the incorporation of samples
from hitherto unstudied regions. Therefore, we included samples from the Peloponnesus Pen-
insula (southern Greece), which could possibly originate from the Neolithic population [59];
the insular population on the island of Samos located 1.7 km from the coast of Asia Minor,
which represents the first investigation of an island population of the species; and the popula-
tion from the Caucasus, a region known as a ‘hotspot’ for biodiversity [61]. An attempt is also
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made to identify the origin of the recently-established population in the Baltic States, and
hence to resolve its controversial status and aid management decisions.

Material and Methods
Samples

Tissue samples used in this study were obtained from 97 individuals originating from five geo-
graphical regions (Fig 1, Table A in S1 File), i.e. i) south-eastern Europe (SEE)—comprising
samples from Romania (country code ROU; n = 5), Croatia (HRV; n = 2), Slovenia (SVN;

n = 2), Ukraine (UKR; n = 12), Serbia (SRB; n = 25), Hungary (HUN; n = 10), and northern
Greece (GRC; Chalkidiki Peninsula, # = 1); ii) the Caucasus (CAU)—comprising samples from
Mountainous Karabakh (NKR; # = 6), Armenia (ARM; n = 3), and Georgia (GEO; n = 5); iii)
the Baltic States (BAL)—comprising samples from Lithuania (LTU; n = 1) and Estonia (EST;

n = 4); iv) southern Greece (GRE-P) —comprising samples from the Peloponnese (GRC;

n = 11); and v) the island of Samos (GRE-S, n = 10).

Molecular genetics protocols

Genomic DNA was extracted using NucleoSpin Tissue kit (MACHEREY-NAGEL) with stan-
dard protocol. We amplified 15 microsatellite loci: CPH4, CPH5, CPH8, CPH12, CPH6, CPH9
[62], CPH22 [63], FH2004, FH2088, FH2096, FH2137, FH2140 [64], CXX.213, C09.250,
C20.253 [65] (Table B in S1 File), as their polymorphism was shown in the golden jackal [52].
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Fig 1. Distribution of sampling sites. Shaded areas represent areas with permanent presence of jackals (based on [38] and [37]).

doi:10.1371/journal.pone.0141236.g001
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This number of polymorphic markers is efficient to detect genetic structure and describe
genetic diversity within populations [66]. For 12 loci PCR were performed in 15 pl containing
1 pl of DNA, 1 pl of 8 uM primer mix, 7.5 pl of Multiplex PCR (Qiagen). Twelve loci were
amplified in three multiplexing sets at following thermal profile: 95°C for 15 min, 40 cycles at
94°C for 30s, 57°C for 90 s, 72°C for 90s and final extension at 72°C for 10 min. The last three
loci were amplified individually in total volume of 15 pl containing 1 pl of DNA, 0.5 pl of each
10 uM primers, 7.5 ul PCR Master Mix (EURx). The thermal profile was 95°C for 3 min, 35
cycles at 95°C for 30 s, 57°C for 45 s, 72°C for 45 s and final extension at 72°C for 5 min. PCR
products were analyzed in a CEQ8000 sequencer (Beckman Coulter) and allele sizes were esti-
mated using the Beckman Coulter Fragment Analysis Software.

Amplification of hypervariable domain of the mitochondrial DNA (mtDNA) control-region
was performed with primers WDLOOPL (5’ ~-TCCCTGACACCCCTACATTC-3’ ) and H576
(5-CGTTGCGGTCATAGGTGAG-3" ) [52]. The PCR reaction mixture containing 2 ul of DNA,
1 pl of each 10 uM primers, 20 pl of PCR Master Mix (EURx) and 16 pl of purified water. The
PCR profile was 94°C for 2 min, 40 cycles at 94°C for 15 s, 55°C for 20 s, 72°C for 60 s and final
extension at 72°C for 2 min. Amplified products were purified using Clean-up kit (A&A Bio-
technology), and then sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit and
3500xL Genetic Analyzer (Applied Biosystems).

Statistical analysis—microsatellites

Polymorphism among microsatellite loci was estimated on three levels. Firstly, we estimated
the number of alleles (A), observed heterozygosity (Ho), unbiased expected heterozygosity
(Hg, [67]) and inbreeding coefficient (Fs) for each locus in the total sample (N = 96). The sig-
nificance of Fis was tested under a randomization procedure, with the Bonferroni correction
for multiple comparison. These analyses were performed using GenAlEx version 6.5 [68] and
FSTAT version 2.9.3.2 [69]. In addition, a probability test for deviation from the Hardy-Wein-
berg equilibrium (HWE) was evaluated for each locus using Genepop (Web version 4.2; [70,
71]). Secondly, we estimated polymorphism for each locus in groups of samples designated a
priori and corresponding with geographical regions. Aside from A, Ho, Hg and Fis, we also cal-
culated allelic richness (R; [72]) using FSTAT, as well as mean values for these parameters.
HWE was tested for each locus within each region, as well as for each region across all loci.
Between-populations genetic differentiation was estimated using Fsr [73] as implemented in
FSTAT.

To find out whether the geographical grouping of samples corresponded with genetic
groups, we applied a Bayesian-clustering method (STRUCTURE version 2.3.4; [74]). Structure
was run 15 times for each user-defined number of genetic groups (K = 1-6), with an initial
burn-in of 50,000, and 1,000,000 iterations of the total data set. The admixture model of ances-
try and the correlated model of allele frequencies were applied. Sampling location was not used
as prior information. Next, we examined AK statistics that identify the largest change in the
estimates of K produced by STRUCTURE (Fig 2A versus Fig 2B) [75]. To visualise the STRUC-
TURE results we used STRUCTURE HARVESTER 0.6.94 [76]. We then applied CLUMPP
1.1.2 [77] to average the multiple runs given by STRUCTURE and correct for the label switch-
ing. The output from CLUMPP was visualised using DISTRUCT v 1.1 [78].

The Bayesian-based method implemented in the Bayesian Analysis of Population Structure
software (BAPS, version 6.0; [79-81]) was used to check the spatial clustering of individuals,
and was followed by admixture analysis. In this analysis, geographical coordinates for each
sample were used. Ten replicates were run for every upper level of K (2, 3, 4, 5, 10, 15, and 20).
The number of iterations used to estimate the admixture coefficient for individuals, and the

PLOS ONE | DOI:10.1371/journal.pone.0141236 November 5, 2015 5/22



@‘PLOS | ONE

Genetic Structure and Expansion of Golden Jackals

>

)

-3300
-3400
-3500 o
-3600

-3700

Mean of estimated likelihoods

-3800

C) SEE

=2

=3

B)
40

30

20

Delta K

10

CAU BAL GRE-P GRE-S

Fig 2. STRUCTURE results: A—estimated likelihoods, In P(D), of each number of inferred genetic clusters (bars are SD—only given when
exceeding the width of dots); B—the corresponding AK curves as a function of K; C—ancestry of individuals, estimated for K =2 and 3 (based on
AK), and 6 (based on estimated likelihoods). SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese; GRE-S—

Greece, Samos Island.

doi:10.1371/journal.pone.0141236.9002
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number of reference individuals from each location were 50 and 200, respectively. The number
of iterations applied to estimate the admixture for reference individuals was set at 15.

We also obtained an additional representation of the genetic structure using Principal Com-
ponents Analysis (PCA). This multivariate descriptive method is not dependent on any model
assumption and can thus provide a useful validation of the Bayesian clustering output [82-84].
We used the R package ADEGENET v1.3.4 [85] to carry out the standard PCA. The results of
the analysis were presented graphically along first and second axes in line with eigenvalues.

Statistical analysis—mitochondrial DNA

Sequences were aligned in BioEdit software v.7.0.5.3 [86], with alignments then being checked
manually. We amplified a 406 base-pair (bp) fragment of the control region for 93 samples also
genotyped with microsatellite markers. We were unable to obtain reliable sequences from one
sample from Estonia (EST), one from the Caucasus (CAU), and two from south-eastern
Europe (SEE). Numbers of haplotypes (H) in the total sample, as well as in particular geograph-
ical regions and genetic groups, haplotype diversity (h), nucleotide diversity (7) and mean
number of nucleotide differences among haplotypes (k) were all calculated using DNAsp 5.10
[87]. Haplotype frequencies in the overall sample and in each geographical region were calcu-
lated using ARLEQUIN v3.5.1.2 [88]. ARLEQUIN was also used to calculate pairwise fst
among regions using haplotype frequencies. The test for significance was performed with 1,000
permutations. The overall genetic structure, based on haplotype frequencies, was estimated in
DNAsp, using Hgr ([89]; equation 2). Significance for the global estimate was determined by
permutation test, on the basis of 1,000 replicates.

A median-joining haplotype network [90] was constructed in NETWORK v4.6.1.1. (Fluxus
Technology Ltd.). We also compared haplotypes identified in this study (GenBank accession
nos. KT362174-KT362176) with haplotypes for the golden jackal deposited in GenBank, and
originating from Bulgaria, Serbia, Croatia, and Italy (KF588364) [51, 52], Serbia (HQ845260)
[91], Bulgaria (AF184048) [92], Poland and Ukraine (KT268318 and KT268319) [93], the Cau-
casus (KJ490945 and KJ490946) [94], and India (AY289997 and AY289996) [95].

Ethics Statement

Tissue samples used in this study were obtained from individuals that died in vehicle collisions,
due to natural causes or as a result of legal hunting. No animal was killed for the purpose of
this study.

Results
Microsatellites

From 15 polymorphic microsatellite loci, amplified in 97 golden jackals (Fig 1), we identified
102 alleles (1.05 alleles per individual). At most loci the polymorphism was moderate (5 to 11
alleles). The greatest number of alleles (A = 14) was discovered at locus FH2137, the lowest

(A = 3) at CPH5 (Table Cin S1 File). In most cases the observed heterozygosity was below
0.60, and at only three loci (FH2004, FH2096, FH2137) did the value exceed 0.70. When all
samples were analysed together, 11 of the 15 microsatellites were found not to be in HWE
(Table Cin S1 File). Similarly, Fis values were found to differ significantly from zero at most
loci following Bonferroni correction, the effect being indicative of heterozygote deficiency.
Given that all the samples were examined together, and we subsequently found significant sub-
structure, this could be due to the Wahlund effect.
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When samples were grouped by geographical distribution, a significant overall Fig was
found only in the case of jackals from the Caucasus (CAU). In south-eastern Europe (SEE)—
the region represented by the highest number of the samples studied—there were three loci
manifesting deviation from the HWE on account of heterozygote deficiency and one, FH2096,
indicative of heterozygote excess (Table D in S1 File). SEE was also the only group with signifi-
cant overall heterozygote deficiency, though F;s was low and non-significant. This group also
had the highest mean number of alleles (mean A = 5.40). Allelic richness was similar in SEE,
CAU and BAL, though slightly lower in two groups from southern Greece, i.e. from the Pelo-
ponnese (GRE-P) and Samos (GRE-S). Observed heterozygosity (Ho) was highest in SEE. The
lowest Ho was found in the insular GRE-S population.

Analysis of genetic structure using Bayesian methods and PCA indicated some grouping
patterns. In the STRUCTURE analysis the highest mean likelihood was indicated for six clus-
ters (Fig 2A). GRE-P and GRE-S formed two uniform genetic groups, whereas SEE consisted
mainly of individuals from two clusters (with most jackals from Hungary and Romania marked
in red, and the majority of those from Serbia and Ukraine shown in violet—Fig 2C; K = 6), but
also of individuals of mixed ancestry. Jackals from CAU and BAL were assigned to two other
clusters, with more or less equal probability of ancestry from each of them. The AK statistic
(Fig 2B) suggested two or three genetic groups. In the two-group scenario the first cluster com-
prised the majority of individuals from SEE and GRE-P, and the second comprised the major-
ity of individuals from GRE-S, CAU and BAL (Fig 2C; K = 2). On the basis of the K = 3 value,
BAL and CAU formed the first genetic group, SEE and GRE-P the second, and GRE-S the
third (Fig 2C; K = 3). In both of these cases, certain individuals from SEE had the highest prob-
ability of ancestry from the CAU/BAL group. These were four individuals from Ukraine (nos.
8599, 8607, 8608, 8927) and two individuals from Serbia (nos. 8620, 8625—Fig 1).

Geographical information about samples in Bayesian analysis (BAPS) suggested the pres-
ence of four genetic groups, with a very limited admixture among them (Fig 3A and 3B). In
general, the geographical groups designated a priori corresponded to genetic groups as indi-
cated by BAPS. However, one sample from SEE (Ukraine, no. 8608) was assigned to the CAU/
BAL cluster, one sample from SEE (northern Greece, no. 8986) was assigned to the GRE-S clus-
ter, and one sample from BAL (Lithuania, no. 9225) was assigned to SEE (Fig 1). A similar
result was obtained by way of admixture analysis (Fig 3B), although in this case two additional
individuals from SEE (nos. 8927 and 8625 from Ukraine and Serbia, respectively) were found
to be of mixed ancestry. Like STRUCTURE, PCA pointed to the genetic distinctness of GRE-S
(Fig 4). The remaining samples were divided by PCA into two groups corresponding with SEE/
GRE-P and CAU/BAL.

Genetic differentiation among the geographical regions was high (overall Fgr = 0.199, 95%
CI =0.147-0.258). Pairwise Fsr ranged from 0.05 to 0.39 (Table 1). Low genetic differentiation
was found between BAL and CAU, whereas all pairwise comparisons with GRE-S indicated a
very high level of genetic differentiation (Fsy > 0.20). Similarly, marked genetic differentiation
was found between GRE-P and CAU and GRE-P and BAL, while moderate genetic differentia-
tion characterised the pairwise comparisons of data for SEE, as set against GRE-P, BAL or
CAU.

Mitochondrial DNA

Based on the mitochondrial DNA (mtDNA) control region fragment, we identified four unique
haplotypes in 93 samples. Both haplotype diversity and nucleotide diversity were low (Table 2),
as was the average number of pairwise nucleotide differences (k = 0.706). Apart from BAL, we
identified two haplotypes per region. The highest level of haplotype diversity was found in
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Fig 3. Results of spatial analysis of genetic structure, using BAPS: A—assignment of specimens to four genetic clusters indicated by spatial
clustering; B—admixture analysis of identified clusters. SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese;
GRE-S—Greece, Samos Island.

doi:10.1371/journal.

pone.0141236.9003

GRE-P, while the most marked nucleotide diversity and highest average number of pairwise
nucleotide differences was found in CAU (Table 2).

Haplotype H1 proved to be most frequent, being absent only from GRE-S. In BAL this was
the only haplotype found. Haplotype H2 proved to be unique to GRE-S, while H3 was shared
between CAU and GRE-S, and H4 between SEE and GRE-P (Table 3, Fig 5).
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Fig 4. Results of Principal Components Analysis performed in ADEGENET. First and second axes and corresponding eigenvalues (inset) are shown.

SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese; GRE-S—Greece, Samos Island.

doi:10.1371/journal.pone.0141236.9004

Comparing haplotypes identified in this study with those deposited in GenBank (homo-
logical sequences of the 250 bp of mtDNA CR), we found that H1 corresponds with a haplo-
type identified previously in Italy, Croatia, Serbia, Bulgaria, Ukraine, NW Poland, and the
Caucasus, while differing by just a single mutation from another haplotype from the

Table 1. Genetic differentiation among geographical regions: SEE—south-eastern Europe (Croatia, Serbia, Slovenia, Hungary, Romania, Ukraine,
northern Greece); CAU—Caucasus (Georgia, Armenia, Mountainous Karabakh); BAL—Baltics (Estonia, Lithuania); GRE-P—Greece, Pelopon-
nese; GRE-S—Greece, Samos Island. Above diagonal—genetic differentiation calculated from mtDNA haplotype frequencies, below diagonal—genetic

differentiation calculated from microsatellites. Significant values (1,000 permutations; P < 0.05) are shown in bold.

Region SEE CAU BAL GRE-P GRE-S
SEE 0.347 -0.199 0.507 0.961
CAU 0.125 -0.045 0.024 0.716
BAL 0.100 0.051 0.090 0.863
GRE-P 0.113 0.207 0.268 0.790
GRE-S 0.293 0.205 0.343 0.388
doi:10.1371/journal.pone.0141236.t001
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Table 2. Sample size (N) and genetic characteristics of mtDNA polymorphism in C. aureus in geographical regions and all samples: h—number of
identified haplotypes; H [SD]—haplotype diversity and corresponding standard deviation; 7 [SD]—nucleotide diversity and corresponding stan-

dard deviation; k—average number of pairwise nucleotide differences. SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—
Greece, Peloponnese; GRE-S—Greece, Samos Island.

Region N
SEE 55
CAU 13
BAL 4

GRE-P 11
GRE-S 10
Total 93

h

A DN = NN

H [SD]

0.036 [0.035]
0.385[0.132]
0.509 [0.101]
0.467 [0.132]
0.344 [0.061]

™ [SD]

0.00009 [0.00009]
0.00189 [0.00065]
0.00125 [0.00025]
0.00115 [0.00032]
0.0017 [0.00033]

0.036
0.769

0.509
0.467
0.706

doi:10.1371/journal.pone.0141236.1002

Table 3. Distribution of golden jackal mtDNA haplotypes in the investigated geographical regions. Frequency in the region and overall frequencies
are reported. SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese; GRE-S—Greece, Samos Island.

Haplotype Motif SEE GRE-P CAU BAL GRE-S Total
H1 TGG 0.98 0.64 0.77 1.00 = 0.800
H2 CAA = = = = 0.70 0.076
H3 TAA = = 0.23 - 0.30 0.068
H4 TAG 0.02 0.36 = = = 0.056

doi:10.1371/journal.pone.0141236.t003

Caucasus (H5). A haplotype observed previously in Indian jackals (H6) differed from H4 by
just four mutations (Fig 5).

Genetic structure as estimated on the basis of haplotype frequencies was found to be pro-
nounced and significant (Hgr = 0.486 for geographical groups, P < 0.001). Pairwise 051 was

CAU
GRE-S
India
o o o H6
SEE
Italy

Croatia
Serbia
GRE-P
GRE-S Bulgaria
Ukraine
CAU
Poland
BAL
Fig 5. The minimum spanning network of mtDNA haplotypes of golden jackals sampled in this study (SEE, CAU, BAL, GRE-P, GRE-S) as well as

those desposited in GenBank (ltaly, Croatia, Serbia, Bulgaria, Ukraine, NW Poland, the Caucasus, and India). The length of each line between two
circles is proportional to the number of mutations.

doi:10.1371/journal.pone.0141236.9005

Caucasus
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highest for the comparison of SEE with GRE-S. No genetic differentiation was noted between
BAL and CAU or between BAL and SEE (Table 1).

Discussion
Genetic diversity

Analysing the results obtained with both microsatellite and mitochondrial markers, we found
higher genetic diversity than has been reported previously for other European populations of
the golden jackal [51, 52], except in the case of the island population from Samos. In Serbia
[51] a total of 31 microsatellite alleles at eight loci were found in 120 individuals, giving 3.8
alleles per locus and 0.26 alleles per individual, compared with 6.8 alleles per locus and 1.05
alleles per individual stated in our study (Table C in S1 File). Similarly, in the Serbian popula-
tion the total observed heterozygosity was 0.28, compared with the 0.52 found in our study.
These differences can be explained by the fact that the populations of golden jackals analysed
in this study were historically older and larger than those from Serbia, or involved samples
from across a larger area, with the SEE geographical group encompassing individuals from a
large part of south-eastern, Central and Eastern Europe. Furthermore, the mean number of
alleles was higher in SEE and CAU (A = 5.40 and 4.67, respectively; Table C in S1 File) than
that found previously [52] in the contemporary samples from Bulgaria (A = 3.5), Slavonia
(continental eastern part of Croatia) and Serbia (A = 4.0), Dalmatia (A = 2.8), and Italy

(A =3.7). Moreover, the analysis of the mitochondrial control region revealed four mitochon-
drial haplotypes (Table 3), as opposed to the one haplotype noted in previous studies [51, 52].
However, the population from Greece (both the Peloponnese and the island of Samos), had a
mean number of alleles of around 3.0 (Table C in S1 File), comparable with what was found in
Dalmatia [52], and hence slightly lower than the value characterising jackals in Slavonia and
Serbia, Bulgaria and Italy [52]. We observed the lowest level of genetic diversity in the island
population at Samos (mean A = 2.67, Ho = 0.38; Table C in S1 File), which could be explained
by the isolation, as low genetic diversity often reflects colonisation of an island by a small num-
ber of individuals (the founder effect) and random processes reducing variability, such as
genetic drift [96-98].

In the present continent-wide study we supported previous findings of Zachos et al. [51]
and Fabbri et al. [52] in Serbia, Bulgaria, Croatia, and Italy, indicating that Europe’s golden
jackals harbor less genetic diversity compared to other wild canids, such as wolves [36, 39-41,
99, 100], or red foxes (Vulpes vulpes) [101, 102]. The genetic diversity of European jackals is
also clearly lower than that found in jackals from Israel [103], which show signals of hybridiza-
tion with grey wolves, dogs, and the African golden wolf (Canis anthus) [104]. For example,
the mean number of alleles in five populations from Israel ranged from 4.7 to 5.6 versus 2.6-
5.4 noted in our study, whereas observed heterozygosity ranged from 0.64 to 0.72 versus 0.38-
0.55 in our study. This is despite the dramatic population decline and bottleneck experienced
in Israel in the 1960s [55, 105]. Thus the low genetic diversity of Europe’s jackals does not
reflect species-specific characteristics, but may be related to the unique history of golden jackals
on this continent.

In contrast with the authors of previous studies [51, 52], we noted polymorphisms in the
mtDNA control region, even though overall haplotype diversity was low (H = 0.34) with just
four haplotypes despite the large sampling area. In jackals from the mainland sites (SEE, CAU,
BAL, GRE-P), it was the haplotype recorded in previous studies (H1) that was found to occur
most frequently. However, it was absent from the island population (Samos), where the unique
H2 haplotype is prevalent. Higher mtDNA diversity compared with previous studies is mainly
connected with the larger sampling area including the Caucasus (one ‘new’ haplotype H3) and
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Greece (three ‘new’ haplotypes: H2, H3 and H4). The highest level of haplotype diversity was
found in the Peloponnese. The greater number of haplotypes in the Aegean region could sug-
gest that the present population in Greece may, at least partially, descend from the ancient
Greek population. However, confirmation of this hypothesis requires further study, preferably
including fossil material. Moreover, in the south-eastern European population, alongside the
haplotype discovered by Zachos et al. [51] and Fabbri et al. [52], we identified the additional
haplotype H4, which appeared in one animal from the Biruchiy Peninsula (southern Ukraine),
i.e., an area outside the Balkan Peninsula, but also in the Peloponnese. Hence, it is possible that
the majority of the Balkan population of C. aureus is uniform in regard to control-region poly-
morphisms, as suggested by earlier studies [51, 52]. Hence, despite the discovery of additional
haplotypes, the genetic diversity in the mitochondrial control region in Europe’s golden jackals
should be regarded as low when compared with that in other canids [102, 106, 107]. However,
further sampling will probably result in the detection of new polymorphisms in mtDNA of the
golden jackal as a species, as the haplotype found in Indian jackals (denoted as H6 in Fig 5) dif-
fers by 4-6 substitutions from the haplotypes identified in the present study.

Genetic structure

Previous studies of golden jackals in Europe emphasized the limited degree of genetic structur-
ing, with only the coastal population from Dalmatia clearly differentiated from other Balkan
samples [51, 52]. A genetic identity relating to Dalmatia has also been suggested in the case of
the grey wolf [108], and was explained either by reference to an origin of this population in a
distinct refugium, or in terms of ecological and behavioural factors [41, 109, 110]. Fabbri et al.
[52] also noted markedly smaller number of alleles (A = 2.8) and more limited heterozygosity
(Ho = 0.37) in Dalmatian jackals and suggested a long-term isolation of this population. In
respect to this, we also call to attention that golden jackals were present in southern Dalmatia
already in the Middle Ages [111] and possibly even much earlier [58].

Our analysis extending to the whole of Europe has pointed to the existence of a pronounced
genetic structure in relation to both nuclear and mitochondrial markers. Individuals from an
extensive area of south-eastern Europe generally form a uniform genetic group, as already
noted by Zachos et al. [51]. Fabbri et al. [52] also reported small genetic differentiation in
microsatellite markers among populations from Bulgaria, Slavonia and Serbia. This probably
reflects recent expansion of the species in this region. However, Greek samples indicate the
existence of a distinct population in the Peloponnese (STRUCTURE, BAPS) (see also [112]),
even if both haplotypes found in south-eastern Europe were also present in animals from this
peninsula. We can speculate that our results support the hypothesis that an ancient Greek pop-
ulation survived in the Peloponnese to the present day, recently merging with a population
expanding in from the east. A similar interpretation can be put forward in regard to Dalmatian
jackals, as already suggested by Fabbri et al. [52]. Thus the two known areas with the early
Holocene findings of jackals [58, 59] are also the only two areas in south-eastern Europe today
that show higher genetic differentiation, giving further support for the continuous presence of
ancient populations along the Mediterranean coast.

STRUCTURE and BAPS suggested ongoing gene flow between the Caucasus and Europe as
well—some individuals from SEE had the highest probability of ancestry from the CAU/BAL
cluster. Interestingly, when the microsatellite genotypes are concerned, an individual from
south-eastern Europe (no. 8927; Table A in S1 File) with the additional haplotype H4 (which is
frequently found in the Peloponnesus Peninsula), was identified as having ancestry from the
Caucasus (STRUCTURE: two-clade and three-clade scenarios) or mixed ancestry from the
Caucasus and Samos Island (BAPS: admixture analysis).
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The island population of golden jackals on Samos was highly differentiated from those from
other sampling sites (Fsy, STRUCTURE: three-clade scenario, PCA, BAPS). Unfortunately,
there was no access to samples from the Turkish mainland, so it remains unclear whether the
geographical barrier of water restrics gene flow between the island and that mainland. How-
ever, our genetic data indicate that there are or were some connections between Samos and
northern Greece (e.g. an individual no. 8986 sampled in Chalkidiki Peninsula [Fig 1, Table A
in S1 File] was assigned to the Samos cluster).

Stepping stone model or long-distance colonizers—on the origin of the
Baltic jackals

First possible observations of jackals in the Baltics are known from 2011, when groups of sev-
eral jackals were noted in Estonia [113]. In 2013 and 2014 several animals were shot, photo-
graphed, or detected during howling surveys in Estonia and Latvia [113, 114], and in 2015 the
first jackal was shot in Lithuania [115]. Although several carnivore experts suggested that natu-
ral expansion was likely, the governments of the Baltic States decided to assume that jackals
were introduced by humans [38].

The genetic data suggest that jackals from the Baltics originate from the Caucasus region
(Estonian samples), and from the population expanding out of south-eastern Europe (Lithua-
nian case). This dual origin does not support the idea that jackals were introduced by
humans, as it is unlikely that someone would capture jackals in different regions and smuggle
them to the Baltics. Additionally, recent records of jackal occurrence from Slovakia, Ukraine,
Belarus, and north-western and eastern Poland [38, 93, 113-116], suggest that both Cauca-
sian and southeastern European populations are spreading towards the north. The presence
of the Caucasian gene pool was also detected in animals from NE Ukraine, further supporting
the hypothesis of natural expansion from the Caucasian region through Ukraine towards
Estonia.

The dynamics of species’ range expansions depend on habitat connectivity, but also on dis-
persal ability [118] and habitat plasticity [119]. Two basic models were suggested for a dispersal
through fragmented environment, where suitable habitat is distributed as a series of patches. In
the ‘island model’ all patches are equally accessible, while in the stepping-stone model
exchanges of individuals are restricted to adjacent populations [120]. Although previous
genetic data suggested a ‘stepping-stone’ nature of golden jackal dispersal [52], our results indi-
cate the possibility of long-distance dispersal in this species. This can also be supported by a
review of literature data, which includes several records of sudden appearances of jackals far
from other known populations. Such example include the (re)colonization of Hungary in the
19th century [60] with the closest known populations at that time being in Dalmatia, Croatia
(at ca. a 300 km straight-line distance) or Bulgaria (400 km away).

Another case resembling the sudden occurrence of several jackals in the Baltics, refers to the
first colonization of Slovenia in the mid-20th century. In winter 1952/3 several jackals suddenly
appeared in Central Slovenia near Ljubljana, with reported observations of groups of up to six
animals [121] and later shooting of two animals near Ljubljana and one at the foothills of the
Julian Alps in NW Slovenia [122]. At that time, the closest jackal population was known from
Ravni Kotari in Dalmatia, Croatia [123], approximately 210 km from Ljubljana. In this proba-
ble case of long-distance dispersal, jackals seem to have dispersed in a group, as it would be
highly unlikely that several animals would appear independently at the same time in the same
place so far from the closest population.

More recent records that can be considered potential cases of long-distance dispersal of
jackals include:
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- amale observed several times from 1996 and then shot in 1998 in Siidbrandenburg in
Germany [124] and an individual photographed four times in 2012 in the Bavarian Forest
[125]. These records were 430 km and 270 km distant, respectively, from the closest-
known reproducing population in eastern Austria and western Hungary;

- five photo-records of a jackal in 2011 in the Northwestern Alps of Switzerland [126], with
the closest known reproducing population in NE Italy 450 km away;

- an individual shot in 2014 near Olevsk in Northern Ukraine [127], 430 km from the clos-
est known population in Southern Ukraine and Moldova;

- an individual shot in 2012 near Tomasovka in Belarus [117], 410 km from the closest
known reproducing population in Hungary;

- ayoung male found dead in April 2015 on a road in NW Poland, close to the German bor-
der [98], ca. 610 km from the reproducing population in NW Hungary;

- GPS-GSM collared 1.5 year old female, which travelled 220 km during 12 days in Hungary
in 2014 (J. Lanszki unpubl. data).

Based on this review of jackal occurrences and our genetic data, we suggest that it is not
uncommon for golden jackals to disperse over several hundred kilometers in human-domi-
nated landscapes. This could explain the speed of jackal expansion in Europe that has been
observed in the last decades [38]. We also suggest that the recent colonization of the Baltic
States is most likely a case of long-distance dispersal. The first ‘wave’ of colonization of the Bal-
tics appears to have originated from the Caucasus region via Ukraine. The second wave on the
other hand seems to have originated from south-eastern Europe through an expansion front in
Romania, Hungary/western Ukraine, Slovakia, and Poland. According to available records it
even appears that a group of several jackals can disperse together (see also [116]). If true, this
would have important implications, as it would considerably increase probability of successful
colonization of new areas.

Management and conservation implications

The golden jackal has already been declared an alien, potentially invasive species in all Baltic
States (e.g. [128]). However, an Invasive Alien Species (IAS) needs to meet at least three crite-
ria: 1) it should be non-native, allochtonous, introduced by people; 2) it should threaten biolog-
ical diversity on the local scale; and 3) it should be characterised by rapid population growth
[129]. Although exponential increase in population size has been observed (e.g. in Hungary
[130]), the other two criteria have not been met. The movement north is evidently a result of
natural migration (as the present study shows), and there is no proof of a harmful effect on
local fauna [131-134]. Also there are no major complaints about golden jackals inflicting harm
on domestic animals reported from Europe [133-136]. Occasional reported claims of jackal
depredation of livestock are believed to be exaggerated often [134, 137], or connected with
erroneous identification, when reported cases have been inspected using forensic genetics
[138]. Recent genetic analysis [104] has also shown that the severe impacts on livestock
reported from Israel [139], are probably not connected with golden jackals per se, but rather
with individuals of admixed origin between several canid species. Furthemore, the parasite
load in the European golden jackal is similar to or lower than that in other carnivores (e.g. the
red fox, grey wolf, and wild cat [Felis silvestris]) in the region [140-143], and no attacks by jack-
als on people are known. For these various reasons, concerns regarding serious negative
impacts of the expansion of the golden jackal in Europe appear to be unfounded as yet.
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Nevertheless, results presented here have several management and conservation implica-
tions. The existence of long-distance dispersal in the golden jackal would seem to warrant the
initiation of international coordination in management of the species in Europe and more
focus on management at the population, rather than at the national level, especially considering
considerable differences that currently exist among countries [38]. We therefore suggest the
development of trans-boundary management strategies and documents similar to the popula-
tion-level management approaches developed in the case of Europe’s large carnivores [144].
We also call for a revision of the approach used in managing jackals in the Baltic States, given
that our results contradict the presumption of the local decision-makers about the human-
assisted origin of the Baltic population. Lastly, our results provide a basis for the development
of a conservation strategy for the golden jackal in the region. We propose that priority should
be given to the Caucasus region, which harbors high genetic diversity in terms of the number
of microsatellite alleles, as well as to the regions of the Peloponnese and Dalmatia [52], in
which a relict gene pool from ancient Mediterranean populations appears to have persisted.
The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, tak-
ing above into account, should be legally protected in all EU member states (for legal implica-
tions of range expansion in this species see [38]).
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